Extensions 1→N→G→Q→1 with N=C4×D7 and Q=C22

Direct product G=N×Q with N=C4×D7 and Q=C22
dρLabelID
D7×C22×C4112D7xC2^2xC4224,175

Semidirect products G=N:Q with N=C4×D7 and Q=C22
extensionφ:Q→Out NdρLabelID
(C4×D7)⋊1C22 = D46D14φ: C22/C1C22 ⊆ Out C4×D7564(C4xD7):1C2^2224,180
(C4×D7)⋊2C22 = D48D14φ: C22/C1C22 ⊆ Out C4×D7564+(C4xD7):2C2^2224,185
(C4×D7)⋊3C22 = C2×D4×D7φ: C22/C2C2 ⊆ Out C4×D756(C4xD7):3C2^2224,178
(C4×D7)⋊4C22 = C2×D42D7φ: C22/C2C2 ⊆ Out C4×D7112(C4xD7):4C2^2224,179
(C4×D7)⋊5C22 = C2×Q82D7φ: C22/C2C2 ⊆ Out C4×D7112(C4xD7):5C2^2224,182
(C4×D7)⋊6C22 = C2×C4○D28φ: C22/C2C2 ⊆ Out C4×D7112(C4xD7):6C2^2224,177
(C4×D7)⋊7C22 = D7×C4○D4φ: C22/C2C2 ⊆ Out C4×D7564(C4xD7):7C2^2224,184

Non-split extensions G=N.Q with N=C4×D7 and Q=C22
extensionφ:Q→Out NdρLabelID
(C4×D7).1C22 = D8⋊D7φ: C22/C1C22 ⊆ Out C4×D7564(C4xD7).1C2^2224,106
(C4×D7).2C22 = D56⋊C2φ: C22/C1C22 ⊆ Out C4×D7564+(C4xD7).2C2^2224,109
(C4×D7).3C22 = SD16⋊D7φ: C22/C1C22 ⊆ Out C4×D71124-(C4xD7).3C2^2224,110
(C4×D7).4C22 = Q16⋊D7φ: C22/C1C22 ⊆ Out C4×D71124(C4xD7).4C2^2224,113
(C4×D7).5C22 = Q8.10D14φ: C22/C1C22 ⊆ Out C4×D71124(C4xD7).5C2^2224,183
(C4×D7).6C22 = D4.10D14φ: C22/C1C22 ⊆ Out C4×D71124-(C4xD7).6C2^2224,186
(C4×D7).7C22 = D7×D8φ: C22/C2C2 ⊆ Out C4×D7564+(C4xD7).7C2^2224,105
(C4×D7).8C22 = D83D7φ: C22/C2C2 ⊆ Out C4×D71124-(C4xD7).8C2^2224,107
(C4×D7).9C22 = D7×SD16φ: C22/C2C2 ⊆ Out C4×D7564(C4xD7).9C2^2224,108
(C4×D7).10C22 = SD163D7φ: C22/C2C2 ⊆ Out C4×D71124(C4xD7).10C2^2224,111
(C4×D7).11C22 = D7×Q16φ: C22/C2C2 ⊆ Out C4×D71124-(C4xD7).11C2^2224,112
(C4×D7).12C22 = Q8.D14φ: C22/C2C2 ⊆ Out C4×D71124+(C4xD7).12C2^2224,114
(C4×D7).13C22 = C2×Q8×D7φ: C22/C2C2 ⊆ Out C4×D7112(C4xD7).13C2^2224,181
(C4×D7).14C22 = C2×C8⋊D7φ: C22/C2C2 ⊆ Out C4×D7112(C4xD7).14C2^2224,95
(C4×D7).15C22 = D28.2C4φ: C22/C2C2 ⊆ Out C4×D71122(C4xD7).15C2^2224,96
(C4×D7).16C22 = D28.C4φ: C22/C2C2 ⊆ Out C4×D71124(C4xD7).16C2^2224,102
(C4×D7).17C22 = D7×C2×C8φ: trivial image112(C4xD7).17C2^2224,94
(C4×D7).18C22 = D7×M4(2)φ: trivial image564(C4xD7).18C2^2224,101

׿
×
𝔽